Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
2022 IEEE Information Technologies and Smart Industrial Systems, ITSIS 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20245166

ABSTRACT

The World Health Organization has labeled the novel coronavirus illness (COVID-19) a pandemic since March 2020. It's a new viral infection with a respiratory tropism that could lead to atypical pneumonia. Thus, according to experts, early detection of the positive cases with people infected by the COVID-19 virus is highly needed. In this manner, patients will be segregated from other individuals, and the infection will not spread. As a result, developing early detection and diagnosis procedures to enable a speedy treatment process and stop the transmission of the virus has become a focus of research. Alternative early-screening approaches have become necessary due to the time-consuming nature of the current testing methodology such as Reverse transcription polymerase chain reaction (RT-PCR) test. The methods for detecting COVID-19 using deep learning (DL) algorithms using sound modality, which have become an active research area in recent years, have been thoroughly reviewed in this work. Although the majority of the newly proposed methods are based on medical images (i.e. X-ray and CT scans), we show in this comprehensive survey that the sound modality can be a good alternative to these methods, providing faster and easiest way to create a database with a high performance. We also present the most popular sound databases proposed for COVID-19 detection. © 2022 IEEE.

2.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20243873

ABSTRACT

As intelligent driving vehicles came out of concept into people’s life, the combination of safe driving and artificial intelligence becomes the new direction of future transportation development. Autonomous driving technology is developing based on control algorithms and model recognitions. In this paper, a cloud-based interconnected multi-sensor fusion autonomous vehicle system is proposed that uses deep learning (YOLOv4) and improved ORB algorithms to identify pedestrians, vehicles, and various traffic signs. A cloud-based interactive system is built to enable vehicle owners to master the situation of their vehicles at any time. In order to meet multiple application of automatic driving vehicles, the environment perception technology of multi-sensor fusion processing has broadened the uses of automatic driving vehicles by being equipped with automatic speech recognition (ASR), vehicle following mode and road patrol mode. These functions enable automatic driving to be used in applications such as agricultural irrigation, road firefighting and contactless delivery under new coronavirus outbreaks. Finally, using the embedded system equipment, an intelligent car was built for experimental verification, and the overall recognition accuracy of the system was over 96%. Author

3.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20243842

ABSTRACT

This paper introduces the improved method for the COVID-19 classification based on computed tomography (CT) volumes using a combination of a complex-architecture convolutional neural network (CNN) and orthogonal ensemble networks (OEN). The novel coronavirus disease reported in 2019 (COVID-19) is still spreading worldwide. Early and accurate diagnosis of COVID-19 is required in such a situation, and the CT scan is an essential examination. Various computer-aided diagnosis (CAD) methods have been developed to assist and accelerate doctors' diagnoses. Although one of the effective methods is ensemble learning, existing methods combine some major models which do not specialize in COVID-19. In this study, we attempted to improve the performance of a CNN for the COVID-19 classification based on chest CT volumes. The CNN model specializes in feature extraction from anisotropic chest CT volumes. We adopt the OEN, an ensemble learning method considering inter-model diversity, to boost its feature extraction ability. For the experiment, We used chest CT volumes of 1283 cases acquired in multiple medical institutions in Japan. The classification result on 257 test cases indicated that the combination could improve the classification performance. © 2023 SPIE.

4.
2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242881

ABSTRACT

Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%. . © 2023 IEEE.

5.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20242834

ABSTRACT

During the formation of medical images, they are easily disturbed by factors such as acquisition devices and tissue backgrounds, causing problems such as blurred image backgrounds and difficulty in differentiation. In this paper, we combine the HarDNet module and the multi-coding attention mechanism module to optimize the two stages of encoding and decoding to improve the model segmentation performance. In the encoding stage, the HarDNet module extracts medical image feature information to improve the segmentation network operation speed. In the decoding stage, the multi-coding attention module is used to extract both the position feature information and channel feature information of the image to improve the model segmentation effect. Finally, to improve the segmentation accuracy of small targets, the use of Cross Entropy and Dice combination function is proposed as the loss function of this algorithm. The algorithm has experimented on three different types of medical datasets, Kvasir-SEG, ISIC2018, and COVID-19CT. The values of JS were 0.7189, 0.7702, 0.9895, ACC were 0.8964, 0.9491, 0.9965, SENS were 0.7634, 0.8204, 0.9976, PRE were 0.9214, 0.9504, 0.9931. The experimental results showed that the model proposed in this paper achieved excellent segmentation results in all the above evaluation indexes, which can effectively assist doctors to diagnose related diseases quickly and improve the speed of diagnosis and patients’quality of life. Author

6.
2023 9th International Conference on Advanced Computing and Communication Systems, ICACCS 2023 ; : 1274-1278, 2023.
Article in English | Scopus | ID: covidwho-20238266

ABSTRACT

With the extraordinary growth in images and video data sets, there is a mind-boggling want for programmed understanding and evaluation of data with the assistance of smart frameworks, since physically it is a long way off. Individuals, unlike robots, have a limited capacity to distinguish unexpected expressions. As a result, the programmed face proximity frame- work is important in face identification, appearance recognition, head-present evaluation, human-PC cooperation, and other applications. Software that uses facial recognition for face detection and identification is regarded as biometric. This study converts the mathematical aspects of a person's face into a face print, which is then stored in a database to verify an individual's identification. A deep learning system compares a digital image or an image taken quickly to a previously stored image(which is saved in the database). The face has a significant function in interpersonal communication for identifying oneself. Face recognition technology determines the size and placement of a human face in a digital picture. Facial recognition software has a wide range of uses in the consumer market and in the security and surveillance sectors. The COVID pandemic has brought facial recognition into greater focus lately than ever before. Face detection and recognition play a vital part in security systems that people need to interact with without making physical contact. The pattern of online exam proctoring is employing face detection and recognition. Facial recognition is used in the airline sector to enable rapid, accurate identification and verification at every stage of the passenger trip. In this research, we focused on image quality because it is the major drawback in existing algorithms and used OPEN CV, Face Recognition, and designed algorithms using libraries in python. This study discusses a method for facial recognition along with its implementation and applications. © 2023 IEEE.

7.
IEEE Transactions on Learning Technologies ; : 1-16, 2023.
Article in English | Scopus | ID: covidwho-20237006

ABSTRACT

The global outbreak of the new coronavirus epidemic has promoted the development of intelligent education and the utilization of online learning systems. In order to provide students with intelligent services such as cognitive diagnosis and personalized exercises recommendation, a fundamental task is the concept tagging for exercises, which extracts knowledge index structures and knowledge representations for exercises. Unfortunately, to the best of our knowledge, existing tagging approaches based on exercise content either ignore multiple components of exercises, or ignore that exercises may contain multiple concepts. To this end, in this paper, we present a study of concept tagging. First, we propose an improved pre-trained BERT for concept tagging with both questions and solutions (QSCT). Specifically, we design a question-solution prediction task and apply the BERT encoder to combine questions and solutions, ultimately obtaining the final exercise representation through feature augmentation. Then, to further explore the relationship between questions and solutions, we extend the QSCT to a pseudo-siamese BERT for concept tagging with both questions and solutions (PQSCT). We optimize the feature fusion strategy, which integrates five different vector features from local and global into the final exercise representation. Finally, we conduct extensive experiments on real-world datasets, which clearly demonstrate the effectiveness of our proposed models for concept tagging. IEEE

8.
IEEE Transactions on Consumer Electronics ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20234982

ABSTRACT

Recently, crowd counting has attracted significant attention, particularly in the context of the COVID-19 pandemic, due to its ability to automatically provide accurate crowd numbers in images. To address the challenges of location-level labeling, several transformer-based crowd counting methods have been proposed with only count-level supervision. However, these methods directly use the transformer as an encoder without considering the uneven crowd distribution. To address this issue, we propose CCTwins, a novel transformer-based crowd counting method with only count-level supervision. Specifically, we introduce an adaptive scene consistency attention mechanism to enhance the transformer-based model Twins-SVT-L for feature extraction in crowded scenes. Additionally, we design a multi-level weakly-supervised loss function that generates estimated crowd numbers in a coarse-to-fine manner, making it more appropriate for weakly-supervised settings. Moreover, intermediate features supervised by count-level labels are utilized to fuse multi-scale features. Experimental results on four public datasets demonstrate that our proposed method outperforms the state-of-the-art weakly-supervised methods, achieving up to a 16.6% improvement in MAE and up to a 13.8% improvement in RMSE across all evaluation settings. Moreover, the proposed CCTwins obtains competitive counting performance, even when compared to the state-of-the-art fully-supervised methods. IEEE

9.
4th International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20232940

ABSTRACT

To minimize the rate of death from COVID-19 and stop the disease from spreading early detection is vital. The normal RT-PCR tests for COVID-19 detection take a long time to complete. In contrast to this test, Covid-19 can be quickly detected using various machine-learning technologies. Previous studies only had access to smaller datasets, as COVID-19 data was not readily available back then. Since COVID-19 is a dangerous virus, the model needs to be robust and trustworthy, and the model must be trained on a large and diverse dataset. To overcome that problem, this study combines six publicly available Chest X-ray datasets to produce a larger and more diverse balanced dataset with a total of 68,424 images. In this study, we develop a CNN model that primarily entails two steps: (a) feature extraction and (b) classification, which are used to identify COVID-19 positive cases from X-ray images. The accuracy of this proposed model is 97.58%, which is higher than most state-of-the-art models. © 2022 IEEE.

10.
Proceedings - 2022 International Conference on Artificial Intelligence of Things, ICAIoT 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20231985

ABSTRACT

Artificial intelligence has played a crucial role in medical disease diagnosis. In this research, data mining techniques that included deep learning with different scenarios are presented for extraction and analysis of covid-19 data. The energy of the features is implemented and calculated from the CT scan images. A modified meta-heuristic algorithm is introduced and then used in the suggested way to determine the best and most useful features, which are based on how ants behave. Different patients with different problems are investigated and analyzed. Also, the results are compared with other studies. The results of the proposed method show that the proposed method has higher accuracy than other methods. It is concluded from the results that the most crucial features can be concentrated on during feature selection, which lowers the error rate when separating sick from healthy individuals. © 2022 IEEE.

11.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20231905

ABSTRACT

During the COVID-19 Pandemic, the need for rapid and reliable alternative COVID-19 screening methods have motivated the development of learning networks to screen COVID-19 patients based on chest radiography obtained from Chest X-ray (CXR) and Computed Tomography (CT) imaging. Although the effectiveness of developed models have been documented, their adoption in assisting radiologists suffers mainly due to the failure to implement or present any applicable framework. Therefore in this paper, a robotic framework is proposed to aid radiologists in COVID-19 patient screening. Specifically, Transfer learning is employed to first develop two well-known learning networks (GoogleNet and SqueezeNet) to classify positive and negative COVID-19 patients based on chest radiography obtained from Chest X-Ray (CXR) and CT imaging collected from three publicly available repositories. A test accuracy of 90.90%, sensitivity and specificity of 94.70% and 87.20% were obtained respectively for SqueezeNet and a test accuracy of 96.40%, sensitivity and specificity of 95.50% and 97.40% were obtained respectively for GoogleNet. Consequently, to demonstrate the clinical usability of the model, it is deployed on the Softbank NAO-V6 humanoid robot which is a social robot to serve as an assistive platform for radiologists. The strategy is an end-to-end explainable sorting of X-ray images, particularly for COVID-19 patients. Laboratory-based implementation of the overall framework demonstrates the effectiveness of the proposed platform in aiding radiologists in COVID-19 screening. Author

12.
2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022 ; 2023.
Article in English | Scopus | ID: covidwho-20231786

ABSTRACT

Nowadays health is very important. All need to take care of their health so that they can prevent diseases and improve their quality of life. The Sanskrit word Ayurveda comprises Science and Knowledge. In simple words, we can say that Ayurveda is the art of living. Medicines can cause hazards to our bodies as well but Ayurveda uses all the natural things for treatment so it is not harmful or dangerous for our bodies. The precise identification of medicinal plants is critical in Ayurvedic medicine. Human specialists use visual characteristics and fragrances to identify plants. Along with leaves flowers and spices are also a vital component in curing diseases. Flowers like lavender, marigold, hibiscus and many more, spices like clove, ginger, cumin, turmeric and so on play crucial role along with their leaves. Covid -19 had very terrible impact on lives of many people. Along with medicines;Ayurveda also played a very important role in curing people. Ayurvedic kadas and many more vanaspatis were used to get rid of this virus, many of the people got rid of this virus at home using home remedies. So, our main aim is to predict the ayurvedic plants that can cure various diseases using machine learning models. © 2023 IEEE.

13.
3rd International Conference on Neural Networks, Information and Communication Engineering, NNICE 2023 ; : 201-207, 2023.
Article in English | Scopus | ID: covidwho-2327136

ABSTRACT

In the current situation of COVID-19 prevention and control, wearing masks remains an important way to prevent the transmission of the Novel Coronavirus. Aiming at the problem that the detection accuracy of the traditional YOLOv3 algorithm can still be improved, this paper proposes an improved yolov3 algorithm and applies it to the practical problem of detecting whether to wear a mask. Firstly, the algorithm introduces the residual structure of structural reparameterization in the feature extraction network named Darknet53 of YOLOv3 to obtain the input features;Secondly, the SimSPPF (Simplified Spatial Pyramid Pooling-Fast) is introduced to enhance feature extraction;Finally, an improved attention mechanism is introduced to make the model focus on regions with more prominent features. Besides, in order to ensure the accuracy of target detection, CIoU and Focal loss function was used in the training process. The results show that compared with the traditional YOLOv3, the detection accuracy of the improved algorithm for normal face and mask face is improved by 16.98% and 7.30% respectively, and the mAP is improved by 12.14%, which can meet the requirements of daily use and lay a foundation for rapid face recognition when wearing mask. () © 2023 IEEE.

14.
2023 IEEE International Conference on Integrated Circuits and Communication Systems, ICICACS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2325392

ABSTRACT

The examination of medical images has benefited greatly from the use of artificial intelligence. In contrast to deep learning systems, which do feature extraction automatically and without human interaction, traditional computer vision methods rely on manually produced features that are particular to a certain domain. Having access to medical information for automated analysis is another major factor driving the trend towards deep learning. Chest x-ray pictures are processed in order to segment the lungs and identify diseases in this thesis. Due to its cheap cost, ease of capture, and non-invasive nature, chest x-ray is the most often used medical imaging technology. However, automatic diagnosis in chest x-rays is difficult due to (1) the presence of the rib-cage and clavicle bones, which can obscure abnormalities that are located beneath them, and (2) the fuzzy intensity transitions near the lung and heart, dense abnormalities, rib-cages, and clavicle bones, which make the identification of lung contours subtle. In x-ray image processing, the Convolutional Neural Network (CNN) is the most often used deep learning architecture. Because to the enormous number of parameters in deep CNN architectures, intensive computing resources are required to train these models. Additionally, chest x-ray datasets are often rather tiny, and there is always the risk of overfitting when developing a model. In this dissertation, we propose five convolutional neural networks (CNNs) to identify illness and segment the lungs in chest x-rays. New Line, New Line In the first research paper, an adaptive lightweight convolutional neural network (ALCNN) is created to detect pneumothorax with few parameters. The model readjusts the feature calibration channel-wise using the convolutional layer and attention mechanism. The suggested model outperformed state-of-the-art deep models trained using three different transfer learning methods. One notable aspect of the suggested model is that it requires ten times less parameters than the best deep models currently available. The second paper suggests the FocusCovid methodology for identifying COVID-19. © 2023 IEEE.

15.
Diagnostyka ; 24(1), 2023.
Article in English | Scopus | ID: covidwho-2292165

ABSTRACT

The spread of the coronavirus has claimed the lives of millions worldwide, which led to the emergence of an economic and health crisis at the global level, which prompted many researchers to submit proposals for early diagnosis of the coronavirus to limit its spread. In this work, we propose an automated system to detect COVID-19 based on the cough as one of the most important infection indicators. Several studies have shown that coughing accounts for 65% of the total symptoms of infection. The proposed system is mainly based on three main steps: first, cough signal detection and segmentation;second, cough signal extraction;and third, three techniques of supervised machine learning-based classification: Support Vector Machine (SVM), K-Nearest Neighbours (KNN), and Decision Tree (DT). Our proposed system showed high performance through good accuracy values, where the best accuracy for classifying female coughs was 99.6% using KNN and 88% for males using SVM. © 2022 by the Authors.

16.
IEEE/ACM Transactions on Audio Speech and Language Processing ; : 1-14, 2023.
Article in English | Scopus | ID: covidwho-2306621

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has drastically impacted life around the globe. As life returns to pre-pandemic routines, COVID-19 testing has become a key component, assuring that travellers and citizens are free from the disease. Conventional tests can be expensive, time-consuming (results can take up to 48h), and require laboratory testing. Rapid antigen testing, in turn, can generate results within 15-30 minutes and can be done at home, but research shows they achieve very poor sensitivity rates. In this paper, we propose an alternative test based on speech signals recorded at home with a portable device. It has been well-documented that the virus affects many of the speech production systems (e.g., lungs, larynx, and articulators). As such, we propose the use of new modulation spectral features and linear prediction analysis to characterize these changes and design a two-stage COVID-19 prediction system by fusing the proposed features. Experiments with three COVID-19 speech datasets (CSS, DiCOVA2, and Cambridge subset) show that the two-stage feature fusion system outperforms the benchmark systems of CSS and Cambridge datasets while maintaining lower complexity compared to DL-based systems. Furthermore, the two-stage system demonstrates higher generalizability to unseen conditions in a cross-dataset testing evaluation scheme. The generalizability and interpretability of our proposed system demonstrate the potential for accessible, low-cost, at-home COVID-19 testing. IEEE

17.
IEEE Transactions on Multimedia ; : 1-7, 2023.
Article in English | Scopus | ID: covidwho-2306433

ABSTRACT

Wearing masks can effectively inhibit the spread and damage of COVID-19. A device-edge-cloud collaborative recognition architecture is designed in this paper, and our proposed device-edge-cloud collaborative recognition acceleration method can make full use of the geographically widespread computing resources of devices, edge servers, and cloud clusters. First, we establish a hierarchical collaborative occluded face recognition model, including a lightweight occluded face detection module and a feature-enhanced elastic margin face recognition module, to achieve the accurate localization and precise recognition of occluded faces. Second, considering the responsiveness of occluded face detection services, a context-aware acceleration method is devised for collaborative occluded face recognition to minimize the service delay. Experimental results show that compared with state-of-the-art recognition models, the proposed acceleration method leveraging device-edge-cloud collaborations can effectively reduce the recognition delay by 16%while retaining the equivalent recognition accuracy. IEEE

18.
4th International Conference on Advanced Science and Engineering, ICOASE 2022 ; : 130-135, 2022.
Article in English | Scopus | ID: covidwho-2306337

ABSTRACT

Earlier discovery of COVID-19 through precise diagnosis, particularly in instances with no evident symptoms, may reduce the mortality rate of patients. Chest X-ray images are the primary diagnostic tool for this condition. Patients exhibiting COVID-19 symptoms are causing hospitals to become overcrowded, which is becoming a big concern. The contribution that machine learning has made to big data medical research has been very helpful, opening up new ways to diagnose diseases. This study has developed a machine vision method to identify COVID-19 using X-ray images. The preprocessing stage has been applied to resize images and enhance the quality of X-ray images. The Gray-level co-occurrence matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM) are then used to extract features from the X-ray images, and these features are combined to develop the performance classification via training by Support Vector Machine (SVM). The testing phase evaluated the model's performance using generalized data. This developed feature combination utilizing the GLCM and GLRLM algorithms assured a satisfactory evaluation performance based on COVID-19 detection compared to the immediate, single feature with a testing accuracy of 96.65%, a specificity of 99.54%, and a sensitivity of 97.98%. © 2022 IEEE.

19.
IEEE Access ; 11:29790-29799, 2023.
Article in English | Scopus | ID: covidwho-2301644

ABSTRACT

Nowadays, online education has been a more general demand in context of COVID-19 epidemic. The intelligent educational evaluation systems assisted by intelligent techniques are in urgent demand. To deal with this issue, this paper introduces the strong information processing ability of deep learning, and proposes the design of an intelligent educational evaluation system using deep learning. Inside the algorithm part, the low-complexity offset minimal sum (OMS) is selected as the front-end processor of deep neural network, so as to reduce following computational complexity in deep neural network. And the deep neural network is adopted as the major calculation backbone. In this paper, our OMS deep neural network parameters are 23 and 57 compared with other parameters, which can save about 59.64% of the network parameters, and the training time is 11270 s and 25000 s respectively, which saves the training time 54.92%. It can be also reflected from experiments that the proposal further improves the performance of unbalanced data classification in this problem scenario. © 2013 IEEE.

20.
IEEE Access ; 11:30739-30752, 2023.
Article in English | Scopus | ID: covidwho-2301404

ABSTRACT

We present a new machine learning based bed occupancy detection system that uses only the accelerometer signal captured by a bed-attached consumer smartphone. Automatic bed occupancy detection is necessary for automatic long-term cough monitoring since the time that the monitored patient occupies the bed is required to accurately calculate a cough rate. Accelerometer measurements are more cost-effective and less intrusive than alternatives such as video monitoring or pressure sensors. A 249-hour dataset of manually-labelled acceleration signals gathered from seven patients undergoing treatment for tuberculosis (TB) was compiled for experimentation. These signals are characterised by brief activity bursts interspersed with long periods of little or no activity, even when the bed is occupied. To process them effectively, we propose an architecture consisting of three interconnected components. An occupancy-change detector locates instances at which bed occupancy is likely to have changed, an occupancy-interval detector classifies periods between detected occupancy changes and an occupancy-state detector corrects falsely-identified occupancy changes. Using long short-term memory (LSTM) networks, this architecture achieved an AUC of 0.94. To demonstrate the application of this bed occupancy detection system to a complete cough monitoring system, the daily cough rates along with the corresponding laboratory indicators of a patient undergoing TB treatment were estimated over a period of 14 days. This provides a preliminary indication that automatic cough monitoring based on bed-mounted accelerometer measurements may present a non-invasive, non-intrusive and cost-effective means of monitoring the long-term recovery of patients suffering from respiratory diseases such as TB and COVID-19. © 2013 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL